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Abstract
We study twisted Jacobi manifolds, a concept that we had introduced in a
previous note. Twisted Jacobi manifolds can be characterized using twisted
Dirac–Jacobi, which are sub-bundles of Courant–Jacobi algebroids. We show
that each twisted Jacobi manifold has an associated Lie algebroid with a
1-cocycle. We introduce the notion of quasi-Jacobi bialgebroid and prove
that each twisted Jacobi manifold has a quasi-Jacobi bialgebroid canonically
associated. Moreover, the double of a quasi-Jacobi bialgebroid is a Courant–
Jacobi algebroid. Several examples of twisted Jacobi manifolds and twisted
Dirac–Jacobi structures are presented.

PACS numbers: 02.20.Sv, 02.40.−k
Mathematics Subject Classification: 53D10, 53D17, 17Bxx

1. Introduction

Jacobi manifolds were introduced by Lichnerowicz [14] and Kirillov [8] as smooth manifolds
endowed with a bivector field � and a vector field E satisfying some compatibility conditions.
When the vector field E identically vanishes, the Jacobi manifold is just a Poisson manifold.
So, Poisson manifolds are particular cases of Jacobi manifolds. But there are other examples
of Jacobi structures on manifolds which are not Poisson, such as contact structures and local
conformally symplectic structures.

The notion of twisted Poisson manifold (or Poisson manifold with a 3-form background)
was introduced by Ševera and Weinstein [24], motivated by the works of Klimčik and Strobl [9]
on topological field theory and Park [20] on string theory. Since Jacobi structures on manifolds
generalize Poisson structures, the introduction of the concept of a twisted Jacobi manifold
seems very natural. This task was achieved in the note [19] where, besides introducing that
notion, we briefly presented some of its properties.
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Dirac structures on manifolds were introduced by Courant and Weinstein [1] and
developed in detail by Courant [2]. Dirac structures include presymplectic forms, Poisson
structures and foliations. The first approach to extend the theory of Dirac structures to Jacobi
manifolds was done by Wade [25], who introduced the E1(M)-Dirac structures as a natural
extension of Dirac bundles in the sense of Courant [2]. These E1(M)-Dirac structures, which
we call Dirac–Jacobi structures, include Jacobi manifolds and are sub-bundles of the vector
bundle (T M ×R)⊕ (T ∗M ×R) over M, satisfying a certain integrability condition. However,
the vector bundle (T M × R) ⊕ (T ∗M × R) is not a Courant algebroid. This fact motivated
a more general treatment, proposed in [4, 18]. The concept of Courant–Jacobi algebroid was
introduced, independently, in [4] and [18], and the main example of this structure is the double
of a Jacobi bialgebroid [3, 5]. A Dirac structure for a Courant–Jacobi algebroid E is defined as
a sub-bundle of the vector bundle E over M satisfying an integrability condition. Dirac–Jacobi
bundles then arise as a particular case of these structures.

As we have already mentioned, twisted Poisson manifolds were introduced by Ševera
and Weinstein [24] who studied them in the framework of Courant algebroids and Dirac
structures. For the case of twisted Jacobi manifolds, we use Dirac–Jacobi structures. More
precisely, we use twisted Dirac–Jacobi structures, which are sub-bundles of the Courant–
Jacobi algebroid (T M × R) ⊕ (T ∗M × R) equipped with a ‘twisted bracket’ on its space of
sections. These Dirac–Jacobi bundles enable us to characterize twisted Jacobi structures on
manifolds.

On the other hand, Roytenberg [22] developed a theory of quasi-Lie bialgebroids and used
it to study twisted Poisson manifolds [23]. Namely, with each twisted Poisson structure on a
manifold M, a quasi-Lie bialgebroid structure on (T M, T ∗M) can be associated. When we try
to investigate what happens in the Jacobi framework, we realize that things are different. First
of all because, in opposition to the Poisson case, one cannot, in general, define a Lie algebroid
structure on the cotangent bundle T ∗M of a Jacobi manifold (M,�,E). Usually, only the
vector bundle T ∗M × R over M admits such a structure [7]. Furthermore, with each Jacobi
manifold, there exists an associated Jacobi bialgebroid [3, 5] while in the case of a Poisson
manifold it admits an associated Lie bialgebroid. Motivated by these facts, we introduce the
concept of a quasi-Jacobi bialgebroid, which is the one that fits in our theory. We prove that
each twisted Jacobi manifold has an associated quasi-Jacobi bialgebroid and that the double
of a quasi-Jacobi bialgebroid is a Courant–Jacobi algebroid.

The paper is divided into eight sections. In section 2 we recall some facts on Jacobi
manifolds and their relation with Lie algebroid theory. In section 3 we study the main
properties of a twisted Jacobi manifold, present some examples and show that if M is equipped
with a twisted Jacobi structure, then there exists a twisted exact homogeneous Poisson structure
on M ×R. Section 4 is devoted to twisted Dirac–Jacobi structures and we characterize twisted
Jacobi manifolds using these structures. Several examples of twisted Dirac–Jacobi bundles
are presented, including graphs of sections of

∧2
(T ∗M × R) and twisted locally conformal

presymplectic structures. We also relate twisted Dirac–Jacobi bundles and Dirac bundles in the
sense of Courant. In section 5 we see how gauge transformations act on twisted Dirac–Jacobi
structures. In section 6 we construct a Lie algebroid with a 1-cocycle associated with each
twisted Jacobi manifold. The notion of quasi-Jacobi bialgebroid is introduced in section 7 and
we prove that its double is a Courant–Jacobi algebroid. In section 8 we show that each twisted
Jacobi manifold admits an associated quasi-Jacobi bialgebroid.

Notation. In this paper, M is a C∞-differentiable manifold of finite dimension. We denote by
T M and T ∗M , respectively, the tangent and cotangent bundles over M and by C∞(M, R) the
space of all real C∞-differentiable functions on M. For the Schouten bracket and the interior
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product of a form with a multivector field, we use the convention of sign indicated by Koszul
[12] (see also [17]).

2. Jacobi manifolds

A Jacobi manifold is a differentiable manifold M equipped with a bivector field � and a vector
field E such that

[�,�] = −2E ∧ � and [E,�] = 0, (1)

where [·, ·] denotes the Schouten bracket [12]. In this case, (�,E) defines a bracket on
C∞(M, R) which is called the Jacobi bracket and is given, for all f, g ∈ C∞(M, R), by

{f, g} = �(df, dg) + f (E · g) − g(E · f ). (2)

The Jacobi bracket endows C∞(M, R) with a local Lie algebra structure in the sense of Kirillov
[8]. Reciprocally, a local Lie algebra structure on C∞(M, R) induces on M a Jacobi structure.

When the vector field E identically vanishes on M, the Jacobi structure reduces to a
Poisson structure on the manifold. However, there are other examples of Jacobi manifolds
either than Poisson manifolds, such as contact and locally conformal symplectic manifolds,
[14].

There are some well-known results concerning Jacobi structures on manifolds that we
briefly recall.

Let (M,�,E) be a Jacobi manifold. Then, the pair (�,E) defines the homomorphism
of C∞(M, R)-modules (�,E)# : �(T ∗M × R) → �(T M × R) given, for any section (α, f )

of T ∗M × R, by

(�,E)#(α, f ) = (�#(α) + f E,−iEα), (3)

and, with each f ∈ C∞(M, R), we can associate the vector field Xf = �#(df ) + f E, called
the hamiltonian vector field of f . We have that

Xf = π((�,E)#(df, f )),

where π : T M × R → T M denotes the projection over the first factor. Moreover, for all
f, g ∈ C∞(M, R),

[Xf ,Xg] = X{f,g}. (4)

Also, the vector bundle T ∗M × R over M endowed with the anchor map π ◦ (�,E)# :
T ∗M × R → T M and the Lie algebra bracket {·, ·} on the space of its sections given, for all
(α, f ), (β, g) ∈ �(T ∗M × R), by

{(α, f ), (β, g)} = (γ, r), (5)

where

γ = L�#(α)β − L�#(β)α − d(�(α, β)) + fLEβ − gLEα − iE(α ∧ β),

r = −�(α, β) + �(α, dg) − �(β, df ) + f E(g) − gE(f ),

is a Lie algebroid over M [7]. The associated exterior derivative d∗ on �
(∧

(T M × R)
) =

⊕k∈Z�
(∧k

(T M × R)
)

is given [13], for all (P,Q) ∈ �
(∧k

(T M × R)
) ∼= �

( ∧k
(T M)

) ⊕
�

( ∧k−1
(T M)

)
, by

d∗(P,Q) = ([�,P ] + kE ∧ P + � ∧ Q,−[�,Q] + (1 − k)E ∧ Q + [E,P ]). (6)

It is well known that, given a Lie algebroid (A, [·, ·], a) over a differentiable manifold M
with a 1-cocycle φ ∈ �(A∗) in the Lie algebroid cohomology complex with trivial coefficients
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[16], we can modify the usual representation of the Lie algebra (�(A), [·, ·]) on C∞(M, R)

by defining a new representation aφ : �(A) × C∞(M, R) → C∞(M, R) as

aφ(X, f ) = a(X)f + (iXφ)f, ∀(X, f ) ∈ �(A) × C∞(M, R). (7)

Therefore, we obtain a new cohomology operator dφ on �(
∧

A∗) = ⊕k∈Z�
( ∧k

A∗) given
by

dφ(β) = dβ + φ ∧ β, ∀β ∈ �
(∧k

A∗), (8)

where d is the cohomology operator defined by ([·, ·], a) on �
(∧

A∗) and a new Lie derivative

operator of forms with respect to X ∈ �(A), Lφ

X = dφ ◦ iX + iX ◦ dφ , that can be expressed in
terms of the usual Lie derivative LX = d ◦ iX + iX ◦ d, as

Lφ

X(β) = LXβ + (iXφ)β, ∀β ∈ �
(∧k

A∗). (9)

Using φ, it is also possible to modify the Schouten bracket [·, ·] on the graded algebra
�

( ∧
A

) = ⊕k∈Z�
(∧k

A
)

to the φ-Schouten bracket [·, ·]φ on �
(∧

A
)

defined, for any
P ∈ �

(∧p
A

)
and Q ∈ �

(∧q
A

)
, by

[P,Q]φ = [P,Q] + (p − 1)P ∧ (iφQ) + (−1)p(q − 1)(iφP ) ∧ Q, (10)

where iφQ and iφP can be interpreted as the usual contraction of a multivector field with a
1-form. A differential calculus using aφ, dφ,Lφ and [·, ·]φ can be developed. The formulae
obtained are similar, but adapted, to the case of a Lie algebroid [3, 5].

A pair (A, φ) formed by a Lie algebroid A and a 1-cocycle φ of A is called a Jacobi
algebroid in the terminology of [3].

A trivial example of a Jacobi algebroid over M is the vector bundle T M × R → M

equipped with the bracket

[(X, f ), (Y, g)] = ([X, Y ], X · g − Y · f ), ∀(X, f ), (Y, g) ∈ �(T M × R), (11)

the vector bundle map π : T M × R → T M , that is the projection over the first factor,
and the section (0, 1) of T ∗M × R. The associated exterior derivative on �

(∧
(T ∗M × R)

)
is the operator d = (d,−d) and (0, 1) is a 1-cocycle in the cohomology complex with trivial
coefficients of (T M ×R, [·, ·], π, d). In the following, we will denote by d(0,1) the differential
operator on �

( ∧
(T ∗M × R)

)
modified by (0, 1), as in (8).

The notion of generalized Lie bialgebroid and the equivalent one of Jacobi bialgebroid
were introduced, respectively, by Iglesias and Marrero in [5] and by Grabowski and Marmo in
[3] in such a way that a Jacobi manifold has a Jacobi bialgebroid canonically associated and
vice versa. A Jacobi bialgebroid over M is a pair (A,A∗) of Lie algebroids over M, in duality,
with differentials d and d∗, respectively, endowed with a 1-cocycle φ ∈ �(A∗) of (A, d) and
a 1-cocycle W ∈ �(A) of (A∗, d∗), such that, for every P ∈ �

( ∧p
A

)
and Q ∈ �

(∧
A

)
, the

following condition holds:

dW
∗ [P,Q]φ = [dW

∗ P,Q]φ + (−1)p+1[P, dW
∗ Q]φ.

The pair formed by the Jacobi algebroid (T M × R, [·, ·], π, (0, 1)), presented above,
together with the Lie algebroid (T ∗M × R, {·, ·}, π ◦ (�,E)#) and the 1-cocycle (−E, 0) ∈
�(T M × R) on it is a Jacobi bialgebroid over the Jacobi manifold (M,�,E) [5].

Finally, let us recall [5] that a section (�,E) of
∧2

(T M × R) defines a Jacobi structure
on the manifold M if and only if

[(�,E), (�,E)](0,1) = (0, 0). (12)
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3. Twisted Jacobi manifolds

In [19] we introduced the concept of a twisted Jacobi manifold and presented some of its
properties. Now, in this section, we will review and complete the results announced in [19].

We start by recalling that, given a bivector field � on a differentiable manifold M, the
associated vector bundle map �# : T ∗M → T M induces a homomorphism of C∞(M, R)-
modules �# : �(T ∗M) → �(T M),

〈β,�#(α)〉 = �(α, β), ∀α, β ∈ �(T ∗M),

that can be extended to a homomorphism, also denoted by �#, from �
(∧k

(T ∗M)
)

to

�
(∧k

(T M)
)
, k ∈ N, as follows:

�#(f ) = f and (�#η)(α1, . . . , αk) = (−1)kη(�#(α1), . . . , �
#(αk)), (13)

for all f ∈ C∞(M, R), η ∈ �
(∧k

(T ∗M)
)

and α1, . . . , αk ∈ �(T ∗M). Analogously, with

each section (�,E) of
∧2

(T M × R), we can associate a homomorphism of C∞(M, R)-
modules

(�,E)# : �
(∧k

(T ∗M × R)
) → �

(∧k
(T M × R)

)
, k ∈ N,

by setting, for all f ∈ C∞(M, R), (η, ξ) ∈ �
( ∧k

(T ∗M × R)
)

and (α1, f1), . . . , (αk, fk) ∈
�(T ∗M × R),

(�,E)#(f ) = f

and

(�,E)#(η, ξ)((α1, f1), . . . , (αk, fk)) = (−1)k(η, ξ)((�,E)#(α1, f1), . . . , (�,E)#(αk, fk)).

(14)

We remark that for k = 1, we recover (3).
Let us introduce some notation, following [24]. Let � be a bivector field on M and ϕ a

3-form on M. We denote by (�# ⊗ 1)(ϕ) the section of
(∧2

T M
)⊗ T ∗M that acts on

multivector fields by contraction with the factor in T ∗M . For any f ∈ C∞(M, R),X ∈
�(T M) and α, β ∈ �(T ∗M),

(�# ⊗ 1)(ϕ)(f ) = 0 and (�# ⊗ 1)(ϕ)(α, β)(X) = −ϕ(�#(α),�#(β),X). (15)

Similarly, if ω is a 2-form on M, then, for any X ∈ �(T M) and α ∈ �(T ∗M),

(�# ⊗ 1)(ω)(α)(X) = ω(�#(α),X).

In what follows, we consider the Jacobi algebroid (T M × R, [·, ·], π, (0, 1)) and are
mainly interested in the vector bundle map defined by (14) for k = 3.

Proposition 3.1. Let (�,E) be a section of
∧2

(T M × R) and (ϕ, ω) a section of∧3
(T ∗M × R). Then,

[(�,E), (�,E)](0,1) = 2(�,E)#(ϕ, ω)

if and only if

[�,�] + 2E ∧ � = 2�#(ϕ) + 2(�#ω) ∧ E (16)

and

[E,�] = (�# ⊗ 1)(ϕ)(E) − ((�# ⊗ 1)(ω)(E)) ∧ E. (17)
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Proof. Let (α, f ), (β, g) and(γ, h) be three arbitrary sections of T ∗M × R. We have

[(�,E), (�,E)](0,1)((α, f ), (β, g), (γ, h))

= ([�,�] + 2E ∧ �, 2[E,�])((α, f ), (β, g), (γ, h))

= ([�,�] + 2E ∧ �)(α, β, γ ) + 2f [E,�](β, γ )

− 2g[E,�](α, γ ) + 2h[E,�](α, β). (18)

On the other hand,

2(�,E)#(ϕ, ω)((α, f ), (β, g), (γ, h)) = 2(�#ϕ)(α, β, γ ) + 2((�#ω) ∧ E)(α, β, γ )

− 2(ϕ(�#(β),�#(γ ), f E) − ϕ(�#(α),�#(γ ), gE) + ϕ(�#(α),�#(β), hE))

− 2((iEα)[ω(�#(γ ), gE) − ω(�#(β), hE)] − (iEβ)[ω(�#(γ ), f E)

−ω(�#(α), hE)] + (iEγ )[ω(�#(β), f E) − ω(�#(α), gE)])

= 2((�#ϕ) + ((�#ω) ∧ E), (�# ⊗ 1)(ϕ)(E)

− ((�# ⊗ 1)(ω)(E) ∧ E))((α, f ), (β, g), (γ, h)). (19)

Comparing the terms on trivector fields and bivector fields of (18) and (19), we obtain,
respectively, formulae (16) and (17). �

The sections of
∧3

(T ∗M × R) that are closed with respect to the differential operator
d(0,1) will have a special role hereafter. We will call them d(0,1)-closed.

Lemma 3.2. A section (ϕ, ω) of
∧3

(T ∗M × R) is d(0,1)-closed, i.e. d(0,1)(ϕ, ω) = (0, 0), if
and only if ϕ = dω.

Thus, we shall denote any d(0,1)-closed section (ϕ, ω) of
∧3

(T ∗M × R) by (dω,ω), with ω a
2-form on M.

Definition 3.3. A twisted Jacobi structure on a differentiable manifold M is defined by choosing
a bivector field �, a vector field E and a 2-form ω on M such that

[(�,E), (�,E)](0,1) = 2(�,E)#(dω,ω). (20)

A manifold equipped with such a structure is called a twisted Jacobi manifold or a ω-Jacobi
manifold and it is denoted by the triple (M, (�,E), ω).

Hence, according to proposition 3.1, we may define a twisted Jacobi manifold as a
manifold M equipped with a section (�,E) of

∧2
(T M × R) and a 2-form ω on M satisfying

conditions (16) and (17), for ϕ = dω.

Examples 3.4

(i) Jacobi manifolds. Any Jacobi manifold (M,�,E) endowed with a 2-form ω satisfying
(�,E)#(dω,ω) = (0, 0) can be viewed as a twisted Jacobi manifold.

(ii) Twisted locally conformal symplectic manifolds. A twisted locally conformal symplectic
manifold is a 2n-dimensional differentiable manifold M equipped with a non-degenerate
2-form �, a closed 1-form ϑ , called the Lee 1-form, and a 2-form ω such that

d(� + ω) + ϑ ∧ (� + ω) = 0.

Let E be the unique vector field and � the unique bivector field on M which are
defined by

i(E)� = −ϑ and i(�#(α))� = −α, for all α ∈ �(T ∗M). (21)
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If we also denote by �# the extension (13) of the isomorphism �# : �(T ∗M) → �(T M)

given by (21), we obtain

E = �#(ϑ) and � = �#(�).

By a simple, but very long computation, we prove that the pair ((�,E), ω) satisfies
relations (16) and (17), for ϕ = dω. Whence, ((�,E), ω) endows M with a twisted
Jacobi structure.

(iii) A trivial example in local coordinates. Let (x0, x1, x2, x3, x4) be a system of local
coordinates in R5. Let us consider a bivector field �, a vector field E and a 2-form ω on
R5 given, in these coordinates, by

� = ∂

∂x1
∧ ∂

∂x3
+

∂

∂x2
∧ ∂

∂x4
+ x4

∂

∂x0
∧ ∂

∂x4
, E = ∂

∂x0
, ω = dx1 ∧ dx3.

A simple computation gives

[�,�] + 2E ∧ � = 2
∂

∂x1
∧ ∂

∂x3
∧ ∂

∂x0
and [E,�] = 0.

Since

�#(ω) = ∂

∂x1
∧ ∂

∂x3
and (�# ⊗ 1)(ω)(E) = 0,

we have

[�,�] + 2E ∧ � = 2�#(ω) ∧ E and [E,�] = −(�# ⊗ 1)(ω)(E) ∧ E.

According to proposition 3.1, with ϕ = dω = 0, ((�,E), ω) defines a twisted Jacobi structure
on the manifold R5.

Given a twisted Jacobi structure ((�,E), ω) on M, (�,E) defines on C∞(M, R) an
internal composition law {·, ·} just as in the case of a Jacobi structure. For all f, g ∈ C∞(M, R),

{f, g} = �(df, dg) + f E(g) − gE(f ). (22)

Since (12) does not hold, this bracket fails the Jacobi identity and is no longer a Lie bracket.

Proposition 3.5. Let (M, (�,E), ω) be a twisted Jacobi manifold. Then, for all f, g, h ∈
C∞(M, R),

{f, {g, h}} + c.p. = −(dω, ω)((�,E)#(df, f ), (�,E)#(dg, g), (�,E)#(dh, h)),

where c.p. denotes sum after circular permutation.

Proof. The result follows directly from (14) for k = 3 and (20), taking into account that, for
any f, g, h ∈ C∞(M, R),

1
2 [(�,E), (�,E)](0,1)((df, f ), (dg, g), (dh, h)) = {f, {g, h}} + c.p. �

Let us now examine some relations between twisted Jacobi manifolds and twisted Poisson
manifolds.

We recall that a twisted Poisson manifold [24] is a differentiable manifold M endowed
with a bivector field � and a closed 3-form ϕ on M such that [�,�] = 2�#(ϕ). When ϕ is
exact, i.e. ϕ = dω with ω ∈ �

(∧2
T ∗M

)
, we say that (M,�, ϕ) is a twisted exact Poisson

manifold. A twisted Jacobi manifold (M, (�,E), ω), with E = 0, defines a twisted exact
Poisson structure on M since

[(�, 0), (�, 0)](0,1) = 2(�, 0)#(dω,ω) ⇒ [�,�] = 2�#(dω).
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Furthermore, it is well known that there exists a close relationship which links
homogeneous Poisson manifolds with Jacobi manifolds [14]. Namely, to each Jacobi
manifold (M,�,E), we can associate a homogeneous Poisson manifold

(
M̃, �̃, ∂

∂t

)
, called

the Poissonization of (M,�,E), with M̃ = M × R and �̃ = e−t
(
� + ∂

∂t
∧ E

)
, t being

the canonical coordinate on R. For the twisted exact Poisson structures, we introduce the
following definition.

Definition 3.6. A homogeneous twisted exact Poisson structure on a manifold M is defined
by a triple (�,Z,ω), where � is a bivector field on M,Z is a vector field on M and ω is a
2-form on M such that

[�,�] = 2�#(dω), [Z,�] = −�, LZω = ω.

Proposition 3.7. Let (M, (�,E), ω) be a twisted Jacobi manifold. We set M̃ = M × R and
we consider on M̃ the tensor fields �̃ = e−t

(
� + ∂

∂t
∧ E

)
and ω̃ = etω, t being the canonical

coordinate on the factor R. Then, the triple
(
�̃, ∂

∂t
, ω̃

)
defines an homogeneous twisted exact

Poisson structure on M̃ .

Proof. We have
[

∂
∂t

, �̃
] = −�̃ and L∂/∂t ω̃ = ω̃. So, according to definition 3.6, it remains to

prove that [�̃, �̃] = 2�̃#(dω̃). From the definition of �̃, we compute

[�̃, �̃] = e−2t ([�,�] + 2E ∧ �) + 2 e−2t

(
∂

∂t
∧ [E,�]

)
and, since (M, (�,E), ω) is a twisted Jacobi manifold, from (16) and (17), we can write

[�̃, �̃] = 2 e−2t

(
�#(dω) + �#(ω) ∧ E +

∂

∂t
∧ ((�# ⊗ 1)(dω)(E)

− ((�# ⊗ 1)(ω)(E)) ∧ E)

)
. (23)

On the other hand,

�̃#(dω̃) = et �̃#(dω + dt ∧ ω). (24)

But

�̃#(dω) = e−3t

(
�#(dω) +

∂

∂t
∧ ((�# ⊗ 1)(dω)(E))

)
(25)

and

�̃#(dt ∧ ω) = e−3t

(
�#(ω) − ∂

∂t
∧ ((�# ⊗ 1)(ω)(E))

)
∧ E. (26)

From equations (23)–(26), we obtain [�̃, �̃] = 2�̃#(dω̃). �

4. Twisted Dirac–Jacobi structures

The notions of Courant–Jacobi algebroid and the equivalent one of generalized Courant
algebroid were introduced in [4] and [18], respectively, as a generalization of the definition of
Courant algebroid [15, 22].

Definition 4.1. ([18]) A generalized Courant algebroid or a Courant–Jacobi algebroid on
a differentiable manifold M is a vector bundle E over M equipped with a non-degenerate
symmetric bilinear form (·, ·) on the bundle, a skew-symmetric bracket [·, ·] on �(E), a bundle
map ρθ : E → T M × R and a section θ of E∗ such that, for any e1, e2 ∈ �(E), the condition
〈θ, [e1, e2]〉 = ρ(e1)〈θ, e2〉 − ρ(e2)〈θ, e1〉 holds, ρ being the bundle map from E onto T M

induced by ρθ , satisfying, for all e, e1, e2, e3 ∈ �(E) the following properties:



Twisted Jacobi manifolds, twisted Dirac–Jacobi structures and quasi-Jacobi bialgebroids 10457

(i) [[e1, e2], e3] + [[e2, e3], e1] + [[e3, e1], e2] = DθT (e1, e2, e3), where T (e1, e2, e3) =
1
3 ([e1, e2], e3) + c.p. and Dθ : C∞(M, R) → �(E) is the first-order differential operator
given by (Dθf, e) = 1

2ρθ (e)f ;
(ii) ρθ ([e1, e2]) = [ρθ (e1), ρ

θ (e2)], where the bracket on the right-hand side is the Lie bracket
(11) on �(T M × R);

(iii) ρθ (e)(e1, e2) = ([e, e1] + Dθ (e, e1), e2) + (e1, [e, e2] + Dθ (e, e2));
(iv) for any f, g ∈ C∞(M, R), (Dθf,Dθg) = 0.

A Dirac structure for the generalized Courant algebroid (E, θ) is a sub-bundle L of E
which is closed under the bracket [·, ·] and is maximally isotropic with respect to the symmetric
bilinear form (·, ·). In this case, (L, ρ|L, [·, ·]|L) is a Lie algebroid over M.

An important example of a Courant–Jacobi algebroid is the double A⊕A∗ of a Jacobi bial-
gebroid ((A, φ), (A∗,W)) over M [4, 18]. The bracket on the space �(A ⊕ A∗) of its sections
is given, for all e1 = X1 + α1, e2 = X2 + α2 ∈ �(A ⊕ A∗), by

[[X1 + α1, X2 + α2]] = (
[X1, X2]φ + LW

∗α1
X2 − LW

∗α2
X1 − dW

∗ (e1, e2)−
)

+
(
[α1, α2]W∗ + Lφ

X1
α2 − Lφ

X2
α1 + dφ(e1, e2)−

)
, (27)

where (e1, e2)− = 1
2

(
iX2α1 − iX1α2

)
. Moreover, θ = φ + W,ρ is the sum of the anchor

maps of A and A∗, the symmetric bilinear form on A ⊕ A∗ is the canonical one, i.e.
(e1, e2) = (e1, e2)+ = 1

2

(
iX2α1 + iX1α2

)
,D = (d∗ + d)|C∞(M,R) and Dθ = (dW

∗ + dφ)|C∞(M,R).
For the case of the Jacobi bialgebroid ((T M × R, (0, 1)), (T ∗M × R, (0, 0))), where

T ∗M × R is equipped with the null Lie algebroid structure, the Courant–Jacobi structure
defined on its double E1(M) = (T M ×R)⊕ (T ∗M ×R) corresponds to the following bracket
on the space �(E1(M)), defined in [25] as a direct generalization of the Courant bracket on
�(T M ⊕ T ∗M) [2], as follows: for all e1 = (X1, f1) + (α1, g1), e2 = (X2, f2) + (α2, g2) ∈
�(E1(M)),

[[e1, e2]] = [[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]]

= [(X1, f1), (X2, f2)]
(0,1) +

(
L(0,1)

(X1,f1)
(α2, g2) − L(0,1)

(X2,f2)
(α1, g1) + d(0,1)(e1, e2)−

)
with

(e1, e2)− = 1
2

(
iX2α1 − iX1α2 + f2g1 − f1g2

)
.

Dirac structures for the Courant–Jacobi algebroid (E1(M), (0, 1)+(0, 0)) will be called Dirac–
Jacobi structures.

Let us now ‘twist’ the bracket [[·, ·]] on �(E1(M)) with a section (ϕ, ω) of
∧3

(T ∗M ×R)

by setting

[e1, e2](ϕ,ω) = [[e1, e2]] + (ϕ, ω)((X1, f1), (X2, f2), ·).

Proposition 4.2. The pair (E1(M), (0, 1) + (0, 0)) equipped with the bracket [·, ·](ϕ,ω) on
�(E1(M)), the canonical bilinear symmetric form (·, ·)+ on the bundle3 and the bundle map
ρ = π + 0 is a Courant–Jacobi algebroid over M if and only if d(0,1)(ϕ, ω) = 0.

We denote this new Courant–Jacobi algebroid by (E1(M)(dω,ω), (0, 1) + (0, 0)) or simply
by (E1(M)ω, (0, 1) + (0, 0)).

Proof. We know that (E1(M), (0, 1) + (0, 0)) equipped with ([[·, ·]], ρ, (·, ·)+) is a Courant–
Jacobi algebroid [18]. Hence, we only have to check the effect of adding the term

3 (e1, e2)+ = 1
2 (iX2 α1 + iX1 α2 + f2g1 + f1g2).
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(ϕ, ω)((X1, f1), (X2, f2), ·) to the bracket [[·, ·]] on �(E1(M)). Let us set θ = (0, 1) + (0, 0).
Then, for any e1 = (X1, f1) + (α1, g1), e2 = (X2, f2) + (α2, g2) ∈ �(E1(M)), we compute

ρθ ([e1, e2](ϕ,ω)) = ρθ ([[e1, e2]]) + ρθ ((ϕ, ω)((X1, f1), (X2, f2), ·))
= [ρθ (e1), ρ

θ (e2)],

and (ii) of definition 4.1 holds. Moreover, for any e = (X, f ) + (α, g) ∈ �(E1(M)), condition
(iii) holds if and only if

((ϕ, ω)((X, f ), (X1, f1), ·), (X2, f2) + (α2, g2))+

+ ((X1, f1) + (α1, g1), (ϕ, ω)((X, f ), (X2, f2), ·))+ = 0,

that is, if and only if

((ϕ(X,X1, ·) + ω(f X1 − f1X, ·), ω(X,X1)), (X2, f2) + (α2, g2))+

+ ((X1, f1) + (α1, g1), (ϕ(X,X2, ·) + ω(f X2 − f2X, ·), ω(X,X2))+ = 0,

which can be proved by a simple computation. Finally, by a long but straightforward
computation, we obtain

[[e1, e2](ϕ,ω), e3](ϕ,ω) + c.p. = d(0,1)(T(ϕ,ω)(e1, e2, e3))

− (d(0,1)(ϕ, ω))((X1, f1), (X2, f2), (X3, f3), ·)
with T(ϕ,ω)(e1, e2, e3) = 1

3 ([e1, e2](ϕ,ω), e3)+ + c.p. Thus, condition (i) of definition 4.1 holds
if and only if d(0,1)(ϕ, ω) = (0, 0), and the proof is complete. �

Definition 4.3. A Dirac sub-bundle L for the Courant–Jacobi algebroid (E1(M)ω, (0, 1) +
(0, 0)) over M is called a ω-Dirac–Jacobi structure or a twisted Dirac–Jacobi structure.

Obviously, if L is a twisted Dirac–Jacobi structure, then (L, [·, ·](dω,ω)|L, ρ|L) is a Lie
algebroid over M.

The next result enables us to characterize twisted Jacobi manifolds in terms of twisted
Dirac–Jacobi structures. Hereafter, in order to simplify the notation, we will denote the bracket
[·, ·](dω,ω) by [·, ·]ω, whenever it is clear to which bracket we refer to.

Proposition 4.4. Let ω be a 2-form on M and (�,E) a section of
∧2

(T M × R). Then,
graph(�,E)# is a ω-Dirac–Jacobi structure if and only if

[(�,E), (�,E)](0,1) = 2(�,E)#(dω,ω).

Proof. For any (α, f ), (β, g) ∈ �(T ∗M × R), we have

[(�,E)#(α, f ) + (α, f ), (�,E)#(β, g) + (β, g)]ω = [(�,E)#(α, f ), (�,E)#(β, g)]

+ {(α, f ), (β, g)} + (dω,ω)((�,E)#(α, f ), (�,E)#(β, g), ·),
where {·, ·} is the bracket (5). So, the graph(�,E)# is closed under the bracket [·, ·]ω if and
only if

[(�,E)#(α, f ), (�,E)#(β, g)] = (�,E)#({(α, f ), (β, g)}
+ (dω,ω)((�,E)#(α, f ), (�,E)#(β, g), ·)). (28)

But (28) is equivalent to [(�,E), (�,E)](0,1) = 2(�,E)#(dω,ω) (see e.g. [10]). �

Corollary 4.5. The triple (M, (�,E), ω) is a twisted Jacobi manifold if and only if the
graph(�,E)# is a ω-Dirac–Jacobi structure.
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Let (η, γ ) be a section of
∧2

(T ∗M × R). We denote by (η, γ )� : T M × R → T ∗M × R

the associated vector bundle morphism that induces on the spaces of sections a map, that we
also denote by (η, γ )�, which is given, for any (X, f ) ∈ �(T M × R), by

(η, γ )�(X, f ) = (iXη + f γ,−iXγ ).

Proposition 4.6. Let (η, γ ) be a section of
∧2

(T ∗M × R). Then, the graph(η, γ )� is a
ω-Dirac–Jacobi structure if and only if d(0,1)(η, γ ) + (dω,ω) = (0, 0).

Proof. We start by remarking that

d(0,1)(η, γ ) + (dω,ω) = (0, 0) ⇔ η = dγ − ω.

The vector bundle graph(η, γ )� over M, whose space of sections is given by

�(graph(η, γ )�) = {(X, f ) + (iXη + f γ,−iXγ ) | (X, f ) ∈ �(T M × R)}
is a maximally isotropic sub-bundle of E1(M) with respect to the symmetric bilinear form
(·, ·)+. Now, let ei = (Xi, fi) +

(
iXi

η + fiγ,−iXi
γ
)
, i = 1, 2, be two sections of the

graph(η, γ )�. Then,

[e1, e2]ω = ([X1, X2], X1(f2) − X2(f1)) + L(0,1)

(X1,f1)

(
iX2η + f2γ,−iX2γ

)
− i(X2,f2) d(0,1)

(
iX1η + f1γ,−iX1γ

)
+ (dω,ω)((X1, f1), (X2, f2), ·)

and [e1, e2]ω ∈ �(graph(η, γ )�) if and only if

L(0,1)

(X1,f1)

(
iX2η + f2γ,−iX2γ

) − i(X2,f2) d(0,1)
(
iX1η + f1γ,−iX1γ

)
+ (dω,ω)((X1, f1), (X2, f2), ·)

= (
i[X1,X2]η + (X1(f2) − X2(f1))γ,−i[X1,X2]γ

)
. (29)

A simple computation shows that (29) is equivalent to η = dγ − ω. �

Let us now look at some other examples of twisted Dirac–Jacobi structures. Recall that
a sub-bundle L of the vector bundle T M ⊕ T ∗M over M is a Dirac structure in the sense of
Courant [2] if L is maximally isotropic with respect to the symmetric canonical bilinear form
on T M ⊕ T ∗M and �(L) closes under the Courant bracket, which is given, for any sections
X + α, Y + β of T M ⊕ T ∗M , by

[X + α, Y + β]C = [X, Y ] + LXβ − LY α + 1
2d(iY α − iXβ). (30)

Example 4.7. Let L be a sub-bundle of T M ⊕ T ∗M,ω a 2-form on M and consider the
sub-bundle Lω of E1

ω(M) whose fibre at a point x ∈ M is given by

Lω(x) = {(X, 0)x + (α − iXω, f )x | (X + α)x ∈ Lx}.
Then, Lω is a ω-Dirac–Jacobi structure if and only if L is a Dirac structure in the sense of
Courant. It is immediate to verify that Lω is maximally isotropic with respect to a symmetric
canonical bilinear form on E1

ω(M) if and only if L is maximally isotropic with respect to a
symmetric canonical bilinear form on T M ⊕ T ∗M . Moreover, if (X, 0) + (α − iXω, f ) and
(Y, 0) + (β − iY ω, g) are any two sections of Lω, then

[(X, 0) + (α − iXω, f ), (Y, 0) + (β − iY ω, g)]ω = ([X, Y ], 0)

+
(
LXβ − LY α + 1

2d(iY α − iXβ) − i[X,Y ]ω,X · g − Y · f + 1
2d(iY α − iXβ)

)
.

So, the sections of Lω close under the bracket [·, ·]ω if and only if the sections of L close under
the Courant bracket on T M ⊕ T ∗M .
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For the next example, we need the following definition.

Definition 4.8. A twisted locally conformal presymplectic structure on a manifold M is a pair
((�, ϑ), ω), where � and ω are two 2-forms on M and ϑ is a closed 1-form on M such that

d(� + ω) + ϑ ∧ (� + ω) = 0.

If M is even dimensional and � is non-degenerate, then (M, (�, ϑ), ω) is a twisted locally
conformal symplectic manifold (cf example 3.4.2).

Example 4.9. Let � and ω be two 2-forms on a manifold M and ϑ be a 1-form on M. Consider
the sub-bundle L((�,ϑ),ω) of E1

ω(M) whose fibre at a point x ∈ M is given by

L((�,ϑ),ω)(x) = {(X, iXϑ)x + (iX� − f ϑ, f )x | (X, f )x ∈ (T M × R)x}. (31)

Then, L((�,ϑ),ω) is a twisted Dirac–Jacobi structure if and only if ((�, ϑ), ω) is a twisted
locally conformal presymplectic structure on M. Effectively, it is easy to check that L((�,ϑ),ω)

is a maximally isotropic sub-bundle of E1
ω(M) with respect to the bilinear symmetric form

(·, ·)+. Let (X, iXϑ)+(iX�−f ϑ, f ) and (Y, iY ϑ)+(iY �−gϑ, g) be two sections of L((�,ϑ),ω).
We compute

[(X, iXϑ) + (iX� − f ϑ, f ), (Y, iY ϑ) + (iY � − gϑ, g)]ω
= ([X, Y ], i[X,Y ]ϑ + dϑ(X, Y )) + (i[X,Y ]� − giXdϑ + f iY dϑ

+ d�(X, Y, ·) + dω(X, Y, ·) + (ϑ ∧ �)(X, Y, ·) + (ϑ ∧ ω)(X, Y, ·)
−{X · g − Y · f − (iXϑ)g + (iY ϑ)f + �(X, Y ) + ω(X, Y )}ϑ,

X · g − Y · f − (iXϑ)g + (iY ϑ)f + �(X, Y ) + ω(X, Y )),

so the space �(L((�,ϑ),ω)) is closed under the bracket [·, ·]ω if and only if dϑ = 0 and
d(� + ω) + ϑ ∧ (� + ω) = 0.

For the next example, we recall that if (M,�, ϕ) is a twisted Poisson manifold, then
(T ∗M, {·, ·}ϕ,�#) is a Lie algebroid over M, where the Lie bracket {·, ·}ϕ is defined, for all
1-forms α and β on M, by

{α, β}ϕ = L�#(α)β − L�#(β)α − d(�(α, β)) + ϕ(�#(α),�#(β), ·).

Example 4.10. Let � be a bivector filed on M,Z a vector field on M and ω a 2-form on M.
We denote by L(�,Z,ω) the sub-bundle of E1

ω(M) whose fibre at a point x ∈ M is given by

L(�,Z,ω)(x) = {(�#(α) − f Z, f )x + (α, iZα)x | (α, f )x ∈ (T ∗M × R)x}.
Then, L(�,Z,ω) is a twisted Dirac–Jacobi structure if and only if (�,Z,ω) defines a
homogeneous twisted exact Poisson structure on M (cf definition 3.6). An easy computation
shows that L(�,Z,ω) is a maximally isotropic sub-bundle of E1(M), with respect to a symmetric
bilinear form (·, ·)+. Let (�#(α) − f Z, f ) + (α, iZα) and (�#(β) − gZ, g) + (β, iZβ) be two
sections of L(�,Z,ω). Then, if (�,Z,ω) is a twisted exact homogeneous Poisson structure, we
compute

[(�#(α) − f Z, f ) + (α, iZα), (�#(β) − gZ, g) + (β, iZβ)]ω
= (�#(L�#(α)β − L�#(β)α − d(�(α, β)) + g(LZα − α) − f (LZβ − β)

+ dω(�#(α),�#(β), ·)) − ((�#(α)) · g − (�#(β)) · f + g(Z · f )

− f (Z · g))Z, (�#(α)) · g − (�#(β)) · f + g(Z · f ) − f (Z · g))

+ (L�#(α)β − L�#(β)α − d(�(α, β)) + g(LZα − α) − f (LZβ − β)

+ dω(�#(α),�#(β), ·)



Twisted Jacobi manifolds, twisted Dirac–Jacobi structures and quasi-Jacobi bialgebroids 10461

−dω(�#(α), gZ, ·) + dω(�#(β), f Z, ·) − ω(g�#(α), ·) + ω(f �#(β), ·)︸ ︷︷ ︸
=0

,

iZ(L�#(α)β − L�#(β)α − d(�(α, β)) + g(LZα − α)

−f (LZβ − β) + dω(�#(α),�#(β), ·)))
and conclude that the space of sections of L(�,Z,ω) is closed under the bracket [·, ·]ω. Thus,
L(�,Z,ω) is a ω-Dirac–Jacobi structure. A similar computation shows that, conversely, if
L(�,Z,ω) is a ω-Dirac–Jacobi structure, then the triple (�,Z,ω) defines a homogeneous
twisted exact Poisson structure on M.

Let ϕ be a closed 3-form on M and L a sub-bundle of T M⊕T ∗M . We recall that L is called
a ϕ-Dirac structure (in the sense of Courant) [24] if it is maximally isotropic with respect
to the canonical bilinear symmetric form on T M ⊕ T ∗M , and its space of sections is closed
under the bracket [·, ·]Cϕ

which is given, for any sections X + α and Y + β of T M ⊕ T ∗M , by

[X + α, Y + β]Cϕ
= [X + α, Y + β]C + ϕ(X, Y, ·),

where [·, ·]C is the Courant bracket given by (30). In [6], the existence of a correspondence
between Dirac–Jacobi structures L ⊂ E1(M) and Dirac structures L̃ ⊂ T (M ×R)⊕ T ∗(M ×
R) in the sense of Courant was proved (see also [21]). For twisted Dirac–Jacobi structures,
we can establish the following.

Proposition 4.11. Let L be a sub-bundle of E1
ω(M). Then,

(i) the sub-bundle L̃ω ⊂ T (M × R) ⊕ T ∗(M × R) given by

L̃ω =
{(

X + f
∂

∂t

)
+ et (α + iXω + gdt)

∣∣∣∣(X, f ) + (α, g) ∈ L

}
is a Dirac structure (in the sense of Courant) if and only if L is a ω-Dirac–Jacobi structure;

(ii) the sub-bundle L̃ ⊂ T (M × R) ⊕ T ∗(M × R) given by

L̃ =
{(

X + f
∂

∂t

)
et (α + gdt)

∣∣∣∣(X, f ) + (α, g) ∈ L

}
is a d(etω)-Dirac structure (in the sense of Courant) if and only if L is a ω-Dirac–Jacobi
structure.

Proof. A simple computation proves that each one of the sub-bundles L̃ω and L̃ of
T (M × R) ⊕ T ∗(M × R) is maximally isotropic with respect to the canonical symmetric
bilinear form on T (M × R) ⊕ T ∗(M × R) if and only if L ⊂ E1

ω(M) is maximally isotropic
with respect to the canonical symmetric bilinear form in E1

ω(M). To complete the proof of the
first assertion, we take two sections

(
Xi + fi

∂
∂t

)
+ et (αi + iXi

ω + gidt), i = 1, 2 of L̃ω. Then,
denoting by [·, ·]C the Courant bracket on �(T (M × R) ⊕ T ∗(M × R)), we compute[(

X1 + f1
∂

∂t

)
+ et

(
α1 + iX1ω + g1dt

)
,

(
X2 + f2

∂

∂t

)
+ et

(
α2 + iX2ω + g2dt

)]
C

=
(

[X1, X2] + (X1 · f2 − X2.f1)
∂

∂t

)
+ et

(
LX1α2 − LX2α1

+
1

2
d
(
iX2α1 − iX1α2

)
+ f1α2 − f2α1 +

1

2
(g2df1 − g1df2 − f1dg2 + f2dg1)

+ dω(X1, X2, ·) + ω(f1X2 − f2X1, ·) + i[X1,X2]ω

)

+ et

(
X1 · g2 − X2 · g1 +

1

2

(
iX2α1 − iX1α2 − f2g1 + f1g2

)
+ ω(X1, X2)

)
dt
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and, since

([X1, X2], X1 · f2 − X2 · f1) +

(
LX1α2 − LX2α1 +

1

2
d
(
iX2α1 − iX1α2

)
+ f1α2 − f2α1

+
1

2
(g2df1 − g1df2 − f1dg2 + f2dg1) + dω(X1, X2, ·)

+ ω(f1X2 − f2X1, ·),X1 · g2 − X2 · g1 +
1

2

(
iX2α1 − iX1α2

−f2g1 + f1g2
)

+ ω(X1, X2)

)
= [(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]ω,

we conclude that the bracket [·, ·]C closes in �(L̃ω) if and only if the bracket [·, ·]ω closes in
�(L). The proof of the second assertion is very similar and we omit it. �

5. Gauge transformations

As in [24], in the case of (twisted) Dirac structures for Courant algebroids, we may define
gauge transformations for Dirac–Jacobi sub-bundles. Given a section (η, γ ) of

∧2
(T ∗M×R),

let us consider the vector bundle map

τ(η,γ ) : E1(M) → E1(M)

that induces on the spaces of sections a map, that we also denote by τ(η,γ ), which is defined,
for any (X, f ) + (α, g) ∈ �(E1(M)), by

τ(η,γ )((X, f ) + (α, g)) = (X, f ) + (α, g) + (η, γ )�(X, f ).

τ(η,γ ) is called a gauge transformation associated with (η, γ ). Let us also consider the Courant–
Jacobi algebroids (E1(M)(dω,ω), (0, 1) + (0, 0)) and (E1(M)(dω,ω)−d(0,1)(η,γ ), (0, 1) + (0, 0)).
Given a (dω,ω)-Dirac–Jacobi structure L, its image by τ(η,γ ) is the vector sub-bundle of
E1(M):

τ(η,γ )(L) = {(X, f ) + (α, g) + (η, γ )�(X, f ) | (X, f ) + (α, g) ∈ L}.

Proposition 5.1. Let L be a (dω,ω)-Dirac–Jacobi structure. Then, for any (η, γ ) ∈
�

( ∧2
(T ∗M × R)

)
, τ(η,γ )(L) is a ((dω,ω)− d(0,1)(η, γ ))-Dirac–Jacobi structure. Moreover,

τ(η,γ )|L : (L, [·, ·](dω,ω)|L, ρ|L) → (τ(η,γ )(L), [·, ·](dω,ω)−d(0,1)(η,γ )|τ(η,γ )(L), ρ|τ(η,γ )(L))

is an isomorphism of Lie algebroids over the identity, with ρ = π + 0.

Proof. Let e1 = (X1, f1) + (α1, g1) and e2 = (X2, f2) + (α2, g2) be any two sections of L.
Then,

(τ(η,γ )(e1), τ(η,γ )(e2))+ = (e1, e2)+︸ ︷︷ ︸
=0

+ 1
2 (〈(X1, f1), (η, γ )�(X2, f2)〉

+ 〈(X2, f2), (η, γ )�(X1, f1)〉) = 0,

and τ(η,γ )(L) is a maximally isotropic sub-bundle of E1(M). On the other hand,

[τ(η,γ )(e1), τ(η,γ )(e2)](dω,ω)−d(0,1)(η,γ ) = [[e1, e2]]

+ (d(ω − η), ω − η + dγ )((X1, f1), (X2, f2), ·)
+L(0,1)

(X1,f1)

(
iX2η + f2γ,−iX2γ

) − L(0,1)

(X2,f2)

(
iX1η + f1γ,−iX1γ

)
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+ d(0,1)
(
iX2(iX1η

)
+ f1

(
iX2γ

) − f2
(
iX1γ

))
= [[e1, e2]] + ((dω,ω) − (dη, η − dγ ))((X1, f1), (X2, f2), ·)

+
(
i[X1,X2]η + iX2

(
iX1dη

)
+ (X1 · f2)γ + f2

(
LX1γ

)
+ f1

(
iX2η

)
− f2

(
iX1η

) − (X2 · f1)γ − f1
(
iX2 dγ

) − f2d
(
iX1γ

)
,

η(X1, X2) − iX1

(
iX2γ

)
+ iX2

(
iX1γ

))
= [[e1, e2]] + (dω,ω)((X1, f1), (X2, f2), ·) + i[(X1,f1),(X2,f2)](0,1) (η, γ )

= τ(η,γ )([e1, e2](dω,ω)), (32)

which means that �(τ(η,γ )(L)) closes under the bracket [·, ·](dω,ω)−d(0,1)(η,γ ) and we conclude
that τ(η,γ )(L) is a ((dω,ω) − d(0,1)(η, γ ))-Dirac–Jacobi structure.

Moreover, with ρ = π + 0, we have

ρ(τ(η,γ )((X, f ) + (α, g))) = ρ((X, f ) + (α, g)), (33)

for any section (X, f ) + (α, g) of L. From (32) and (33), we deduce that τ(η,γ )|L is an
isomorphism of Lie algebroids over the identity. �

The twisted Dirac–Jacobi structures L and τ(η,γ )(L) are said to be gauge equivalent.

Corollary 5.2. Let L be a (dω,ω)-Dirac–Jacobi structure and (η, γ ) ∈ �
( ∧2

(T ∗M × R)
)
.

(i) If d(0,1)(η, γ ) = (0, 0), then τ(η,γ )(L) is also a (dω,ω)-Dirac–Jacobi structure.
(ii) If d(0,1)(η, γ ) = (dω,ω), then τ(η,γ )(L) is a Dirac–Jacobi structure.

Let us denote by Dirω the set of all ω-Dirac–Jacobi structures and consider the additive
group

F =
{

(η, γ ) ∈ �
( 2∧

(T ∗M × R)
)∣∣∣∣d(0,1)(η, γ ) = 0

}
.

Corollary 5.2(i) means that F acts on Dirω with the action

F × Dirω → Dirω, ((η, γ ), L) �→ τ(η,γ )(L),

and two elements of Dirω are gauge equivalent if they lie in the same orbit of the action.

6. The Jacobi algebroid associated with a twisted Jacobi manifold

In this section, we will show that we can associate a Jacobi algebroid with each twisted Jacobi
manifold.

Proposition 6.1. Let (M, (�,E), ω) be a twisted Jacobi manifold. Then, (T ∗M ×
R, {·, ·}ω, π ◦ (�,E)#) is a Lie algebroid over M, where {·, ·}ω is the bracket on �(T ∗M × R)

given, for all (α, f ), (β, g) ∈ �(T ∗M × R), by

{(α, f ), (β, g)}ω = {(α, f ), (β, g)} + (dω,ω)((�,E)#(α, f ), (�,E)#(β, g), ·), (34)

{·, ·} being the bracket (5).

Proof. Let (M, (�,E), ω) be a twisted Jacobi manifold. From corollary 4.5, we know that
the graph(�,E)# is a twisted Dirac–Jacobi sub-bundle of E1

ω(M); hence, it is a Lie algebroid
over M with the following bracket on the space of its sections:

[(�,E)#(α, f ) + (α, f ), (�,E)#(β, g) + (β, g)](dω,ω) = [(�,E)#(α, f ), (�,E)#(β, g)]

+ {(α, f ), (β, g)} + (dω,ω)((�,E)#(α, f ), (�,E)#(β, g), ·). (35)
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Since the bracket (35) splits in the sum �(T M ×R)⊕�(T ∗M ×R), then its projection {·, ·}ω
over �(T ∗M × R) is a Lie bracket. Moreover, for any h ∈ C∞(M, R),

{(α, f ), h(β, g)}ω = h{(α, f ), (β, g)}ω + (((π ◦ (�,E)#)(α, f )) ·h)(β, g).

So, ({·, ·}ω, π ◦ (�,E)#) endows T ∗M × R with a Lie algebroid structure. �

Corollary 6.2. Let (M, (�,E), ω) be a twisted Jacobi manifold. Then, for any f, g ∈
C∞(M, R),

{d(0,1)f, d(0,1)g}ω = d(0,1){f, g} + (dω,ω)((�,E)#(d(0,1)f ), (�,E)#(d(0,1)g), ·).

Proof. It is an immediate consequence of proposition 6.1, taking into account that, for any
f, g ∈ C∞(M, R), d(0,1){f, g} = {d(0,1)f, d(0,1)g}, with the bracket on the left-hand side given
by (22) and the bracket on the right-hand side given by (5). �

The differential operator dω
∗ defined on �

( ∧
(T M × R)

)
by the Lie algebroid structure

({·, ·}ω, π ◦ (�,E)#) on T ∗M × R is given,

• for any f ∈ C∞(M, R), by

dω
∗ f = d∗f = −(�,E)#(df, 0); (36)

• for any (X, f ) ∈ �(T M × R), by

dω
∗ (X, f ) = d∗(X, f ) + ((�,E)# ⊗ 1)(dω,ω)(X, f ), (37)

where d∗ denotes the operator given by (6) and (�,E)# ⊗ 1 is defined adapting (15) in the
obvious way. �

Proposition 6.3. Let (M, (�,E), ω) be a twisted Jacobi manifold. The section (−E, 0) of
T M × R is a 1-cocycle for the Lie algebroid (T ∗M × R, {·, ·}ω, π ◦ (�,E)#) over M.

Proof. It suffices to prove that dω
∗ (−E, 0) = (0, 0). Let (α, f ), (β, g) be any sections of

T ∗M × R. Then,

dω
∗ (−E, 0)((α, f ), (β, g))

= d∗(−E, 0)((α, f ), (β, g)) + ((�,E)# ⊗ 1)(dω,ω)(−E, 0)((α, f ), (β, g))

= [E,�](α, β) − (dω,ω)((�,E)#(α, f ), (�,E)#(β, g), (−E, 0))

= ((�# ⊗ 1)(dω)(E) − ((�# ⊗ 1)(ω)(E)) ∧ E)(α, β)

+ dω(�#(α),�#(β), E) − (iEα)ω(�#(β), E) + (iEβ)ω(�#(α), E)

= 0,

and so dω
∗ (−E, 0) = (0, 0). �

From propositions 6.1 and 6.3, we deduce that the twisted Jacobi structure ((�,E), ω)

on M defines a Jacobi algebroid structure on T ∗M × R. Moreover, we have, from (8), (36)
and (37), that

• for any f ∈ C∞(M, R),

(dω
∗ )(−E,0)f = −(�,E)#(df, f ); (38)

• for any (X, f ) ∈ �(T M × R),

(dω
∗ )(−E,0)(X, f ) = [(�,E), (X, f )](0,1) + ((�,E)# ⊗ 1)(dω,ω)(X, f ). (39)
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The Lie algebra homomorphism, from C∞(M, R) to �(T M), expressed by equation (4)
in the case where M is a Jacobi manifold, fails in the case of twisted Jacobi manifolds, as
shown in the following proposition.

Proposition 6.4. Let (M, (�,E), ω) be a twisted Jacobi manifold. Then, for any
f, g ∈ C∞(M, R),

[Xf ,Xg] = X{f,g} + (π ◦ (�,E)#)((dω,ω)((�,E)#(df, f ), (�,E)#(dg, g), ·)). (40)

Proof. From (28) we have, with (�,E)#(df, f ) = (Xf ,−E · f ),

[(Xf ,−E · f ), (Xg,−E · g)] = (X{f,g},−E · {f, g})
+ (�,E)#((dω,ω)((�,E)#(df, f ), (�,E)#(dg, g), ·)).

The projection over the first factor gives (40). �

7. Quasi-Jacobi bialgebroids and their doubles

The notion of quasi-Lie bialgebroid was introduced in [22]. It is a structure on a pair (A,A∗)
of vector bundles, in duality, over a differentiable manifold M that is defined by a Lie algebroid
structure on A∗, a skew-symmetric bracket on the space of smooth sections of A and a bundle
map a: A → T M , satisfying some compatibility conditions. These conditions are expressed
in terms of a section of

∧3
A∗, which turns to be an obstruction to the Lie bialgebroid structure

on (A,A∗). As in the case of a Lie bialgebroid, the double A ⊕ A∗ of a quasi-Lie bialgebroid
(A,A∗) is endowed with a Courant algebroid structure [11, 22].

In this section, in order to adapt the previous notion to the Jacobi framework, we introduce
the concept of quasi-Jacobi bialgebroid and prove that its double is endowed with a Courant–
Jacobi algebroid structure [4, 18].

Definition 7.1. A quasi-Jacobi bialgebroid structure on a pair (A,A∗) of dual vector bundles
over a differentiable manifold M consists of

• a Lie algebroid structure ([·, ·]∗, a∗) on A∗ with a 1-cocycle W,
• a bundle map a : A → T M ,
• a skew-symmetric operation [·, ·] on �(A),
• a section φ ∈ �(A∗),
• a section ϕ ∈ �

(∧3
A∗),

satisfying, for all X, Y,Z ∈ �(A) and f ∈ C∞(M, R), the following properties:

(i) [X, f Y ] = f [X, Y ] + (a(X)f )Y;
(ii) a([X, Y ]) = [a(X), a(Y )] − a∗ϕ(X, Y, ·);

(iii) [[X, Y ], Z] + c.p. = −dW
∗ (ϕ(X, Y,Z))− ((iϕ(X,Y,·)dW

∗ Z) + c.p.), where dW
∗ is the

modified differential operator on �
(∧

A
)

defined by the Lie algebroid structure of A∗

and the 1-cocycle W;
(iv) dφ − ϕ(W, ·, ·) = 0, where d is the quasi-differential operator on �

(∧
A∗) determined

by the structure ([·, ·], a) on A;
(v) dφϕ = 0, where dφ is given, for any β ∈ �

( ∧k
A∗), by dφ(β) = dβ + φ ∧ β;

(vi) dW
∗ [P,Q]φ = [dW

∗ P,Q]φ + (−1)p+1[P, dW
∗ Q]φ , with P ∈ �

(∧p
A

)
and Q ∈ �

(∧
A

)
.

We will denote the quasi-Jacobi bialgebroid by ((A, φ), (A∗,W), ϕ).

Let ((A, φ), (A∗,W), ϕ) be a quasi-Jacobi bialgebroid over M,Lφ and LW
∗ the quasi-

Lie derivative and the Lie derivative operators defined, respectively, by dφ and dW
∗ as
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in (9), aφ and aW
∗ the deformed anchor maps according to (7). On the Whitney sum

bundle A ⊕ A∗, we consider the two non-degenerate canonical bilinear forms (·, ·)±, and
on the space �(A ⊕ A∗) ∼= �(A) ⊕ �(A∗) we define the bracket [·, ·]ϕ by setting, for any
e1 = X1 + α1, e2 = X2 + α2 ∈ �(A ⊕ A∗),

[e1, e2]ϕ = [X1 + α1, X2 + α2]ϕ = [[X1 + α1, X2 + α2]] + ϕ(X1, X2, ·), (41)

where [[·, ·]] is the bracket (27).

Theorem 7.2. Let ((A, φ), (A∗,W), ϕ) be a quasi-Jacobi bialgebroid over M. The vector
bundle A ⊕ A∗ over M endowed with ([·, ·]ϕ, (·, ·)+, ρ

θ ,Dθ ), where θ = φ + W ∈
�(A∗ ⊕ A), ρθ = aφ + aW

∗ and Dθ = (dW
∗ + dφ)|C∞(M,R), is a Courant–Jacobi algebroid

over M.

For establishing the above theorem, we need the results of the following lemmas. Let
((A, φ), (A∗,W), ϕ) be a quasi-Jacobi bialgebroid over M.

Lemma 7.3. For any P ∈ �
(∧k

A
)
, X, Y ∈ �(A), α ∈ �(A∗) and f ∈ C∞(M, R),

(i) dW
∗ [X, Y ] = [dW

∗ X, Y ] + [X, dW
∗ Y ];

(ii) LW
∗φP + Lφ

WP = 0;
(iii) 〈φ,W 〉 = 0 and a(W) + a∗(φ) = 0;
(iv) L∗φX + [W,X] = 0;

(v) [dW
∗ f,X] + LW

∗dφf
X = 0 and [dφf, α]W∗ + Lφ

dW∗ f
α = 0.

Proof. The proof is based on facts that dW
∗ (resp. dφ) is a derivation of [·, ·]φ (resp. [·, ·]W∗ )

and it is similar to the case of a Jacobi bialgebroid (see [5, 18]). �

On the space C∞(M, R) we define the internal composition law {·, ·} by setting, for any
f, g ∈ C∞(M, R),

{f, g} = 〈dφf, dW
∗ g〉. (42)

Lemma 7.4. For any f, g ∈ C∞(M, R),

[dW
∗ f, dW

∗ g] = dW
∗ ({g, f }). (43)

Proof. From the skew symmetry of the bracket [·, ·] on �(A), from lemma 7.3 (v) and because
(dW

∗ )2 = 0,

[dW
∗ f, dW

∗ g] = −[dW
∗ g, dW

∗ f ] = LW
∗dφg

(dW
∗ f )

= dW
∗ (〈dφg, dW

∗ f 〉) = dW
∗ ({g, f }). �

Lemma 7.5. The bracket (42) is a first-order differential operator on the second argument
and it is skew symmetric.

Proof. In fact, for any f, g, h ∈ C∞(M, R),

{f, gh} = g{f, h} + h{f, g} − gh{f, 1} (44)

because

dW
∗ (gh) = gdW

∗ h + hdW
∗ g − ghW.
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In order to establish the skew symmetry of (42), we will prove that, for any f ∈
C∞(M, R),

{f, f } = 0. (45)

Since (A∗, [·, ·]∗, a∗,W) is a Lie algebroid over M with a 1-cocycle, the homomorphism
of C∞(M, R)-modules aW

∗ : �(A∗) → �(T M × R) given by (7) induces a Lie
algebroid homomorphism over the identity between the Lie algebroids with 1-cocycles
(A∗, [·, ·]∗, a∗,W) and (T M × R, [·, ·], π, (0, 1)). Hence, for any f ∈ C∞(M, R),4

(aW
∗ )∗(0, 1) = W, (aW

∗ )∗(δf, f ) = dW
∗ f and (aW

∗ )∗(δf, 0) = d∗f, (46)

where (aW
∗ )∗ : �(T ∗M × R) → �(A) denotes the transpose of aW

∗ . On the other hand, since
the quasi-differential operator d on �(A∗) is defined by a : �(A) → �(T M) and by the
bracket [·, ·] on �(A), we can easily prove that

(aφ)∗(δf, 0) = a∗(δf ) = df and (aφ)∗(δf, f ) = dφf, (47)

where (aφ)∗ : �(T ∗M × R) → �(A∗) denotes the transpose of aφ . So,

{f, g} = 〈dφf, dW
∗ g〉 (46),(47)= 〈(aφ)∗(δf, f ), (aW

∗ )∗(δg, g)〉
= 〈(δf, f ), aφ ◦ (aW

∗ )∗(δg, g)〉. (48)

When g = 1, (48) gives

{f, 1} = 〈(δf, f ), aφ ◦ (aW
∗ )∗(0, 1)〉 (46)= 〈(δf, f ), aφ(W)〉 = −〈δf, a∗(φ)〉, (49)

where the last equality follows from lemma 7.3 (iii). On the other hand,

{1, f } = 〈(0, 1), aφ ◦ (aW
∗ )∗(δf, f )〉 = 〈(0, 1), aφ(dW

∗ f )〉
= 〈φ, d∗f 〉 = 〈φ, a∗

∗(δf )〉. (50)

From (49) and (50), we get

{f, 1} = −{1, f }. (51)

Using lemma 7.3(iii), (46) and (47), we can write

{f, f } = 〈(δf, 0), aφ ◦ (aW
∗ )∗(δf, 0)〉. (52)

From lemma 7.4, we have

dW
∗ ({f, f }) = [dW

∗ f, dW
∗ f ] = 0. (53)

In particular, for f 2,

dW
∗ ({f 2, f 2}) = 0 (54)

and

0 = dW
∗ ({f 2, f 2}) (52)= dW

∗ (〈(δf 2, 0), aφ ◦ (aW
∗ )∗(δf 2, 0)〉

= 4f 2dW
∗ ({f, f }) + 4{f, f }dW

∗ f 2 − 4f 2{f, f }W
(53),(8)= 4{f, f }d∗f 2.

So, for any f ∈ C∞(M, R),

{f, f }d∗f 2 = 0. (55)

4 In this section, in order to avoid confusion with the quasi-differential d of A, we will denote by δf the usual de
Rham differential of f ∈ C∞(M, R).
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Then,

0
(55),(8)= 〈dφ1, {f, f }dW

∗ f 2 − f 2{f, f }W 〉
= {f, f }{1, f 2} − f 2{f, f }〈φ,W 〉

(44)= 2f {f, f }{1, f } − f 2{f, f } {1, 1}︸ ︷︷ ︸
=0

= 2f {f, f }{1, f } (56)

and

0
(55),(8)= 〈dφf, {f, f }dW

∗ f 2 − f 2{f, f }W 〉
= {f, f }{f, f 2} − f 2{f, f }{f, 1}

(44),(51)= 2f {f, f }2 + 2f 2{f, f }{1, f }
(56)= 2f {f, f }2,

where we deduce that (45) holds. �

Remark 7.6. From the skew symmetry of (42) and the fact that it is a first-order differential
operator on the second argument, we conclude that it is a first-order differential operator on
each argument.

Lemma 7.7. For any f ∈ C∞(M, R),X ∈ �(A) and α ∈ �(A∗),

(i) (a ◦ dW
∗ + a∗ ◦ dφ)f = 0;

(ii) [a(X), a∗(α)] = a∗
(
Lφ

Xα
) − a

(
LW

∗αX
)

+ a(dW
∗ 〈α,X〉).

Proof. For (i) we have that, for any g ∈ C∞(M, R),

〈(aφ ◦ dW
∗ + aW

∗ ◦ dφ)f, (δg, g)〉 = 〈dW
∗ f, (aφ)∗(δg, g)〉 + 〈dφf, (aW

∗ )∗(δg, g)〉
(47),(46)= 〈dW

∗ f, dφg〉 + 〈dφf, dW
∗ g〉

(42)= {g, f } + {f, g} = 0

because {·, ·} is skew symmetric. So, (aφ ◦ dW
∗ + aW

∗ ◦ dφ)f = 0. But

(aφ ◦ dW
∗ + aW

∗ ◦ dφ)f = (a ◦ dW
∗ + a∗ ◦ dφ)f + 〈φ, dW

∗ f 〉 + 〈W, dφf 〉
and

〈φ, dW
∗ f 〉 + 〈W, dφf 〉 (46),(47)= 〈aW

∗ (φ) + aφ(W), (δf, f )〉 = 0,

where the last equality follows from lemma 7.3(iii). Consequently, for any f ∈ C∞(M, R),

(a ◦ dW
∗ + a∗ ◦ dφ))f = 0.

The proof of (ii) is similar to the case of a Jacobi bialgebroid (see [5, 18]). �

Lemma 7.8. Let ((A, φ), (A∗,W), ϕ) be a quasi-Jacobi bialgebroid over M. Then, the quasi-
Lie derivative operator Lφ associated with the quasi-differential operator dφ on �

( ∧
A∗)

satisfies the following property. For any X, Y, V1, . . . , Vp ∈ �(A) and any η ∈ �
(∧p

A∗),

Lφ

[X,Y ]η(V1, . . . , Vp) = (
Lφ

X ◦ Lφ

Y − Lφ

Y ◦ Lφ

X

)
η(V1, . . . , Vp)

+
p∑

i=1

(−1)iη([[X, Y ], Vi] + c.p., V1, . . . , V̂i , . . . , Vp)

− aW
∗ (ϕ(X, Y, ·))(η(V1, . . . , Vp)). (57)
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Proof. We prove the above formula by a simple, but long, computation, taking into account
condition (iv) of definition 7.1 of a quasi-Jacobi bialgebroid. �

Now, we will prove theorem 7.2.

Proof of theorem 7.2. We have to check that conditions (i)–(iv) of definition 4.1 hold. In
order to establish condition (ii), we use the results of lemma 7.7 and conditions (ii) and (iv) of
definition 7.1 of a quasi-Jacobi bialgebroid. We obtain that, for any two sections e1 = X1 + α1

and e2 = X2 + α2 of A ⊕ A∗,

ρθ ([e1, e2]ϕ) = [ρθ (e1), ρ
θ (e2)].

For condition (iii) we have that, for all e, e1, e2 ∈ �(A ⊕ A∗), e = X + α, e1 = X1 + α1, e2 =
X2 + α2,

([e, e1]ϕ + Dθ (e, e1)+, e2)+ + (e1, [e, e2]ϕ + Dθ (e, e2)+)+

= ([[e, e1]] + Dθ (e, e1)+, e2)+ + 1
2ϕ(X,X1, X2)

+ (e1, [[e, e2]] + Dθ (e, e2)+)+ + 1
2ϕ(X,X2, X1)

= ([[e, e1]] + Dθ (e, e1)+, e2)+ + (e1, [[e, e2]] + Dθ (e, e2)+)+.

But, by doing the same computations as in proposition 4.1 of [18], we establish the equality

([[e, e1]] + Dθ (e, e1)+, e2)+ + (e1, [[e, e2]] + Dθ (e, e2)+)+ = ρθ (e)(e1, e2)+.

Hence, we conclude

ρθ (e)(e1, e2)+ = ([e, e1]ϕ + Dθ (e, e1)+, e2)+ + (e1, [e, e2]ϕ + Dθ (e, e2)+)+.

Condition (iv) can be easily proved as follows. For any f, g ∈ C∞(M, R),

(Dθf,Dθg)+ = (dW
∗ f + dφf, dW

∗ g + dφg)+ = 1
2 (〈dφg, dW

∗ f 〉 + 〈dφf, dW
∗ g〉)

= 1
2 ({g, f } + {f, g}) = 0,

where {·, ·} is the bracket (42) which, by lemma 7.5, is skew symmetric. Finally, it remains
to establish condition (i) of definition 4.1, i.e. for any e1, e2, e3 ∈ �(A ⊕ A∗), ei = Xi + αi ,
i = 1, 2, 3,

[[e1, e2]ϕ, e3]ϕ + [[e2, e3]ϕ, e1]ϕ + [[e3, e1]ϕ, e2]ϕ = DθTϕ(e1, e2, e3), (58)

where Tϕ(e1, e2, e3) = 1
3 (([e1, e2]ϕ, e3)+ + c.p.). Since the proof involves a very long

computation, we only give a short schedule.
First, we note that if T (e1, e2, e3) = 1

3 (([[e1, e2]], e3)+ + c.p.), then

Tϕ(e1, e2, e3) = T (e1, e2, e3) + 1
2ϕ(X1, X2, X3). (59)

Let us set

[[e1, e2]ϕ, e3]ϕ + [[e2, e3]ϕ, e1]ϕ + [[e3, e1]ϕ, e2]ϕ = Y + β, (60)

where Y and β denote the components of [[e1, e2]ϕ, e3]ϕ+c.p. on �(A) and �(A∗), respectively.
We have

[[e1, e2]ϕ, e3]ϕ + c.p. = [[[e1, e2]] + ϕ(X1, X2, ·), e3]ϕ + c.p.

= ([[[e1, e2]], e3]ϕ + [ϕ(X1, X2, ·), e3]ϕ) + c.p.

= ([[[[e1, e2]], e3]] + ϕ( ˜[[e1, e2]], X3, ·) + [[ϕ(X1, X2, ·), e3]]) + c.p.,

where ˜[[ei, ej ]], i, j = 1, 2, 3, denotes the part of [[ei, ej ]] that belongs to �(A). Hence,

Y = ( ˜[[[[e1, e2]], e3]] + ˜[[ϕ(X1, X2, ·), e3]]) + c.p.
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Taking into account condition (iii) of definition 7.1, the fact that (A∗, [·, ·]∗, a∗) is a Lie
algebroid over M, so

LW
∗[αi ,αj ]W∗

= LW
∗αi

◦ LW
∗αj

− LW
∗αj

◦ LW
∗αi

for i, j = 1, 2, 3,

and also (59), we obtain, after a long computation,

Y = dW
∗ (Tϕ(e1, e2, e3)). (61)

Similarly, for β we have

β = ( ̂[[[[e1, e2]], e3]] + ϕ( ˜[[e1, e2]], X3, ·) + ̂[[ϕ(X1, X2, ·), e3]]) + c.p.,

where ̂[[[[ei, ej ]], ek]] (resp. ̂[[ϕ(Xi,Xj , ·), ek]]), i, j, k = 1, 2, 3, denotes the component of
[[[[ei, ej ]], ek]] (resp. [[ϕ(Xi,Xj , ·), ek]]) that is a section of A∗. We repeat the computations
developed in proposition 4.1 of [18] for the calculation of the corresponding β and we take
into account conditions (iii) and (v) of definition 7.1, the fact that (A∗, [·, ·]∗, a∗) is a Lie
algebroid over M, so [[α1, α2]W∗ ]W∗ + c.p. = 0, and the results of lemma 7.8 and (59). After a
long calculation, we get

β = dφ(Tϕ(e1, e2, e3)). (62)

From (60)–(62) we conclude that (58) holds. �

Remark 7.9. When ϕ = 0, the quasi-Jacobi bialgebroid is a Jacobi bialgebroid and we obtain
proposition 4.1 of [18].

8. The quasi-Jacobi bialgebroid of a twisted Jacobi manifold

Let (M, (�,E), ω) be a twisted Jacobi manifold. We consider the following skew symmetric
bracket on the space of sections of the vector bundle T M × R over M, given, for all
(X, f ), (Y, g) ∈ �(T M × R), by

[(X, f ), (Y, g)]′ = [(X, f ), (Y, g)] − (�,E)#((dω,ω)((X, f ), (Y, g), ·)), (63)

where [·, ·] is the bracket (11), and we define an operator d′, acting on the space of sections of
the exterior algebra

∧
(T ∗M × R) as a graduate differential operator, by setting

• on f ∈ C∞(M, R),

d′f = df = (df, 0);
• on sections (α, f ) of T ∗M × R,

d′(α, f ) = d(α, f ) − (dω,ω)((�,E)#(α, f ), ·, ·).

Then, we extend d′, by linearity, to the algebra
(
�

(∧
(T ∗M × R)

)
,∧)

. The operator d′

coincides with the one determined by the structure ([·, ·]′, π) on T M × R.
Now, we use the section (0, 1) ∈ �(T ∗M×R) to modify the bracket [·, ·]′ on �(T M×R),

according to formula (10), and also the operator d′. The new bracket will be denoted by
[·, ·]′(0,1) and the resulting operator d′(0,1) is defined as follows:

• on f ∈ C∞(M, R),

d′(0,1)f = d(0,1)f = (df, f );
• on sections (α, f ) of T ∗M × R,

d′(0,1)(α, f ) = d(0,1)(α, f ) − (dω,ω)((�,E)#(α, f ), ·, ·).
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Let us extend the bracket [·, ·]′(0,1) on �(T M × R) to the whole algebra
(
�

(∧
(T M ×

R)
)
,∧)

, as in the case of a Jacobi algebroid. In particular, if (X, f ) ∈ �(T M × R) and

(C, Y ) ∈ �
( ∧2

(T M × R)
)
, we have

[(C, Y ), (X, f )]′(0,1) = [(C, Y ), (X, f )](0,1)

− (((�,E)# ⊗ (C, Y )# + (C, Y )# ⊗ (�,E)#) ⊗ 1)(dω,ω)(X, f ), (64)

where the second term on the right-hand side of (64) is the section of
∧2

(T M × R) given, for
any (α, g), (β, h) ∈ �(T ∗M × R), by

(((�,E)# ⊗ (C, Y )# + (C, Y )# ⊗ (�,E)#) ⊗ 1)(dω,ω)(X, f )((α, g), (β, h))

= (dω,ω)((�,E)#(α, g), (C, Y )#(β, h), (X, f ))

+ (dω,ω)((C, Y )#(α, g), (�,E)#(β, h), (X, f )).

Lemma 8.1. Let (M, (�,E), ω) be a twisted Jacobi manifold. Then, for any (X, f ) ∈
�(T M × R), we have

(dω
∗ )(−E,0)(X, f ) = [(�,E), (X, f )]′(0,1) − ((�,E)# ⊗ 1)(dω,ω)(X, f ). (65)

Proof. It is a direct consequence of (64), (10) and (39). �

We remark that if ω is a 2-form on M such that (�,E)#(dω,ω) = (0, 0), i.e. when the
twisted Jacobi manifold is just a Jacobi manifold, we recover the well-known relation [5],
d

(−E,0)
∗ (X, f ) = [(�,E), (X, f )](0,1).

In the following theorem, which is the main result of this section, we show that one can
associate a quasi-Jacobi bialgebroid with each twisted Jacobi manifold.

Theorem 8.2. Let (M, (�,E), ω) be a twisted Jacobi manifold and (T ∗M × R, {·, ·}ω, π ◦
(�,E)#) its associated Lie algebroid. Consider the vector bundle T M × R equipped with the
bracket (63) on the space of its sections, the operator d′ and the projection π : T M×R → T M .
Then, ((T M × R, (0, 1)), (T ∗M × R, (−E, 0)), (dω,ω)) is a quasi-Jacobi bialgebroid
over M.

Proof. We have to check that all conditions of definition 7.1 are satisfied. According
to proposition 6.3, the section (−E, 0) of T M × R is a 1-cocycle for the Lie algebroid
(T ∗M × R, {·, ·}ω, π ◦ (�,E)#).

Let (X, f ) and (Y, g) be any two sections of T M × R and h ∈ C∞(M, R). Then,

[(X, f ), h(Y, g)]′ = h[(X, f ), (Y, g)]′ + (π(X, f ))(h)(Y, g),

which means that condition (i) of definition 7.1 holds. We also have

π([(X, f ), (Y, g)]′) = [X, Y ] − (π ◦ (�,E)#)((dω,ω)((X, f ), (Y, g), ·)),
which is (ii) of definition 7.1. Moreover,

d′(0, 1) = −(dω,ω)((�,E)#(0, 1), ·, ·) = (dω,ω)((−E, 0), ·, ·),
and so (iv) is also satisfied. The skew symmetry of the morphism (�,E)# allows us to
conclude that

d′(0,1)(dω,ω) = (0, 0),

which is condition (v) of definition 7.1.
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Let us now consider the sections (X1, f1), (X2, f2) and (X3, f3) of T M × R. Then,

[[(X1, f1), (X2, f2)]
′, (X3, f3)]

′ + c.p. = ([[(X1, f1), (X2, f2)], (X3, f3)]

− (�,E)#((dω,ω)([(X1, f1), (X2, f2)], (X3, f3), ·))
− [(�,E)#((dω,ω)((X1, f1), (X2, f2), ·)), (X3, f3)]

+ (�,E)#((dω,ω)((�,E)#((dω,ω)((X1, f1), (X2, f2), ·)), (X3, f3), ·)))
+ c.p. (66)

First, we remark that, since [·, ·] is a Lie bracket on �(T M × R),

[[(X1, f1), (X2, f2)], (X3, f3)] + c.p. = (0, 0).

Let (α, g) be an arbitrary section of T ∗M × R. Then,

〈(α, g),−(�,E)#((dω,ω)([(X1, f1), (X2, f2)], (X3, f3), ·)) + c.p.〉
= (π(X1, f1)) · ((dω,ω)((X2, f2), (X3, f3), (�,E)#(α, g))) + c.p.

− (π(�,E)#(α, g)) · ((dω,ω)((X1, f1), (X2, f2), (X3, f3)))

− (dω,ω)([(X1, f1), (�,E)#(α, g)], (X2, f2), (X3, f3)) − c.p.

+ (0, 1) ∧ (dω,ω)((X1, f1), (X2, f2), (X3, f3), (�,E)#(α, g)) (67)

and

〈(α, g),−[(�,E)#((dω,ω)((X1, f1), (X2, f2), ·)), (X3, f3)] + c.p.〉
= − (

i(dω,ω)((X1,f1),(X2,f2),·)(d
ω
∗ )(−E,0)(X3, f3)

)
(α, g) − c.p.

− (π(X1, f1)) · ((dω,ω)((X2, f2), (X3, f3), (�,E)#(α, g))) − c.p.

+ (dω,ω)([(X1, f1), (�,E)#(α, g)], (X2, f2), (X3, f3)) + c.p.

− f1(dω,ω)((X2, f2), (X3, f3), (�,E)#(α, g)) − c.p.

− (dω,ω)((X1, f1), (X2, f2), ((�,E)# ⊗ 1)(dω,ω)(X3, f3)(α, g)) − c.p.

(68)

On the other hand,

〈(α, g), (�,E)#((dω,ω)((�,E)#((dω,ω)((X1, f1), (X2, f2), ·)), (X3, f3), ·)) + c.p.〉
= (dω,ω)((X1, f1), (X2, f2), ((�,E)# ⊗ 1)(dω,ω)(X3, f3)(α, g)) + c.p.

(69)

If we add up the terms of (67)–(69), we obtain

−(π(�,E)#(α, g)) · ((dω,ω)((X1, f1), (X2, f2), (X3, f3)))

+ (0, dω)((X1, f1), (X2, f2), (X3, f3), (�,E)#(α, g))

− (
i(dω,ω)((X1,f1),(X2,f2),·)(d

ω
∗ )(−E,0)(X3, f3)

)
(α, g) − c.p.

− f1(dω,ω)((X2, f2), (X3, f3), (�,E)#(α, g)) − c.p.

= −(dω
∗ )(−E,0)((dω,ω)((X1, f1), (X2, f2), (X3, f3)))((α, g))

− (
i(dω,ω)((X1,f1),(X2,f2),·)(d

ω
∗ )(−E,0)(X3, f3)

)
(α, g) − c.p.,

and we conclude that

[[(X1, f1), (X2, f2)]
′, (X3, f3)]

′ + c.p. = −(dω
∗ )(−E,0)((dω,ω)((X1, f1), (X2, f2), (X3, f3)))

− (
i(dω,ω)((X1,f1),(X2,f2),·)(d

ω
∗ )(−E,0)(X3, f3) + c.p.

)
,

which is condition (iii) of definition 7.1.
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Finally, we must show that, for any (P, P0) ∈ �
( ∧p

(T M × R)
)

and (Q,Q0) ∈
�(

∧
(T M × R)),

(dω
∗ )(−E,0)[(P, P0), (Q,Q0)]

′(0,1)

= [(dω
∗ )(−E,0)(P , P0), (Q,Q0)]

′(0,1) + (−1)p+1[(P, P0), (d
ω
∗ )(−E,0)(Q,Q0)]

′(0,1).

(70)

As in the case of a Jacobi algebroid [3], it is enough to prove (70) in cases where: (i) (P, P0)

and (Q,Q0) are both functions of M, (ii) (P, P0) is a section of T M × R and (Q,Q0) is a
function of M and (iii) (P, P0) and (Q,Q0) are both sections of T M × R.

We remark that, for any f ∈ C∞(M, R) and (P, P0) ∈ �
(∧p

(T M × R)
)
,

[(P, P0), f ]′(0,1) = [(P, P0), f ](0,1).

When (P, P0) = (f, 0) ≡ f and (Q,Q0) = (g, 0) ≡ g, with f, g ∈ C∞(M, R), equation (70)
gives

[(dω
∗ )(−E,0)f, g](0,1) − [f, (dω

∗ )(−E,0)g](0,1) = (0, 0),

or, equivalently,

[[(�,E), f ](0,1), g](0,1) − [f, [(�,E), g](0,1)](0,1) = (0, 0). (71)

The graded Jacobi identity for the bracket [·, ·](0,1) on �(T M ×R) ensures the validity of (71).
Let us now take (P, P0) = (X, f ) ∈ �(T M × R) and (Q,Q0) = g ∈ C∞(M, R). Then,

(dω
∗ )(−E,0)[(X, f ), g]′(0,1) = [(�,E), [(X, f ), g](0,1)](0,1)

= [(X, f ), [(�,E), g](0,1)](0,1) + [[(�,E), (X, f )](0,1), g](0,1)

= [(X, f ), (dω
∗ )(−E,0)g](0,1) + [(dω

∗ )(−E,0)(X, f ), g](0,1)

− [((�,E)# ⊗ 1)(dω,ω)(X, f ), g](0,1)

= [(X, f ), (dω
∗ )(−E,0)g]′(0,1)

+ (�,E)#((dω,ω)((X, f ), (dω
∗ )(−E,0)g, ·))

+ [(dω
∗ )(−E,0)(X, f ), g]′(0,1)

− [((�,E)# ⊗ 1)(dω,ω)(X, f ), g](0,1)

= [(X, f ), (dω
∗ )(−E,0)g]′(0,1) + [(dω

∗ )(−E,0)(X, f ), g]′(0,1), (72)

which proves (70) in this case.
When (P, P0) = (X, f ) and (Q,Q0) = (Y, g) are two sections of T M × R,

equation (70) is given by

(dω
∗ )(−E,0)[(X, f ), (Y, g)]′(0,1) = [(dω

∗ )(−E,0)(X, f ), (Y, g)]′(0,1)

+ [(X, f ), (dω
∗ )(−E,0)(Y, g)]′(0,1). (73)

We compute

(dω
∗ )(−E,0)[(X, f ), (Y, g)]′(0,1) = [(�,E), [(X, f ), (Y, g)](0,1)](0,1)

+ ((�,E)# ⊗ 1)(dω,ω)([(X, f ), (Y, g)](0,1))

− [(�,E), (�,E)# ((dω,ω)((X, f ), (Y, g), ·))](0,1)

− ((�,E)# ⊗ 1)(dω,ω)((�,E)#((dω,ω)((X, f ), (Y, g), ·)))
= [(X, f ), [(�,E), (Y, g)](0,1)](0,1) + [[(�,E), (X, f )](0,1), (Y, g)](0,1)

+ ((�,E)# ⊗ 1)(dω,ω)([(X, f ), (Y, g)](0,1))

− ((�,E)# ⊗ 1)(dω,ω)((�,E)#((dω,ω)((X, f ), (Y, g), ·)))
+ (�,E)#(d(0,1)((dω,ω)((X, f ), (Y, g), ·)))
+ (�,E)#(dω,ω) ((dω,ω)(X, f ), (Y, g), ·)) (74)
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where, in the last equality, we used (20), the graded Jacobi identity for the bracket [·, ·](0,1)

and also the following formula, that holds for any section (α, f ) of T ∗M × R:

[(�,E)#(α, f ), (�,E)] = (�,E)#(d(0,1)(α, f )) + 1
2 [(�,E), (�,E)](0,1)((α, f )).

On the other hand,

[(dω
∗ )(−E,0)(X, f ), (Y, g)]′(0,1) + [(X, f ), (dω

∗ )(−E,0)(Y, g)]′(0,1)

= [[(�,E), (X, f )](0,1), (Y, g)](0,1) − (((�,E)# ⊗ ([(�,E), (X, f )](0,1))#

+ ([(�,E), (X, f )](0,1))# ⊗ (�,E)#) ⊗ 1)(dω,ω)(Y, g)

+ [((�,E)# ⊗ 1)(dω,ω)(X, f ), (Y, g)](0,1)

−(((�,E)# ⊗ (((�,E)# ⊗ 1)(dω,ω)(X, f ))#

+ (((�,E)# ⊗ 1)(dω,ω)(X, f ))# ⊗ (�,E)#) ⊗ 1)(dω,ω)(Y, g)

+ [(X, f ), [(�,E), (Y, g)](0,1)](0,1) + (((�,E)# ⊗ ([(�,E), (Y, g)](0,1))#

+ ([(�,E), (Y, g)](0,1))# ⊗ (�,E)#) ⊗ 1)(dω,ω)(X, f )

+ [(X, f ), ((�,E)# ⊗ 1)(dω,ω)(Y, g)](0,1)

+ (((�,E)# ⊗ (((�,E)# ⊗ 1)(dω,ω)(Y, g))#

+ (((�,E)# ⊗ 1)(dω,ω)(Y, g))# ⊗ (�,E)#) ⊗ 1)(dω,ω)(X, f ). (75)

Comparing the terms of (74) and (75), we conclude, after some computations, that (73) holds
if and only if, for all (α, h), (β, l) ∈ �(T ∗M × R),

d(0,1)((dω,ω)((X, f ), (Y, g), ·))((�,E)#(α, h), (�,E)#(β, l))

− (dω,ω)([(X, f ), (Y, g)](0,1), (�,E)#(α, h), (�,E)#(β, l))

+ (dω,ω)((Y, g), (�,E)#(α, h), ([(�,E), (X, f )](0,1))#(β, l))

− (dω,ω)((Y, g), (�,E)#(β, l), ([(�,E), (X, f )](0,1))#(α, h))

+ [(Y, g), ((�,E)# ⊗ 1)(dω,ω)(X, f )](0,1)((α, h), (β, l))

− (dω,ω)((X, f ), (�,E)#(α, h), ([(�,E), (Y, g)](0,1))#(β, l))

+ (dω,ω)((X, f ), (�,E)#(β, l), ([(�,E), (Y, g)](0,1))#(α, h))

− [(X, f ), ((�,E)# ⊗ 1)(dω,ω)(Y, g)](0,1)((α, h), (β, l)) = 0. (76)

After a long computation, we get that (76) is equivalent to

(d(0,1)(dω,ω))((X, f ), (Y, g), (�,E)#(α, h), (�,E)#(β, l)) = 0,

which holds since d(0,1)(dω,ω) = (0, 0). �
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